LSIC Excavation and Construction Focus Group http://lsic.jhuapl.edu/

March 5, 2021 (February Meeting)

Athonu Chatterjee

Athonu.Chatterjee@jhuapl.edu

Friendly Reminders

- Slides, chat and recording will be posted in our website in 2-3 days. (http://lsic.jhuapl.edu/Focus-Areas/Excavation-and-Construction.php)
- Feel free to post your questions/suggestions in 'chat'.
 - We can move the discussion to Confluence.
- Please mute yourself if you are not speaking.

Focus Group Update

- Add your information in "E&C Who's Who".
 - Yellow pages for E&C community.
- Use Confluence for technical discussions, sharing resources, seeking feedback, etc.
 - http://lsic-wiki.jhuapl.edu/ (sign-up required)
 - Contact Andrea Herman for access: ams573@alumni.psu.edu

N S O R T I U M

Break the Ice Lunar Challenge (NASA Centennial Challenge)

Excavate icy regolith and deliver acquired resources in extreme lunar conditions.

<u>https://breaktheicechallenge.</u> <u>com/</u>

Timeline

NOVEMBER 18, 2020

Phase 1 opens

2

3

DECEMBER 2020 - JANUARY 2021

Webinars to support registered Teams and potential Teams in developing their system architectures
 Promotional activities and/or other support for registered Teams
 Judging Panel Summit (virtual) to brief judges on roles/responsibilities and Challenge rules

JUNE 18, 2021

Deadline for registration and for Teams to submit their system architectures

JUNE – JULY, 2021

Administrative review of the system architectures to verify compliance with rules
 Judging Panel may conduct virtual interviews with Teams

JULY – AUGUST, 2021

Judging Panel reviews and scores the system architectures
 Judging Panel Summit (virtual) to determine Phase 1 winners

AUGUST 13, 2021

Phase 1 winners announced

Focus Group Goal

Overarching Goal: Help NASA set the stage for a big RFP for 2030 lunar base development.

- Provide recommendations for upcoming E&C–specific CLPS activities.
- Enhance and smoothen interaction between industry and NASA.
 - Help develop RFI and RFP that are easily understood by all.
 - Recommendations for funding through various avenues such as SBRI, STRG, ---.
 - Community building.
- Help NASA in some technical areas.

Suggestions for E&C-related CLPS activities
Who's Who in E&C
E&C Resource Library
> E&C Monthly Meeting
Year 1 Goal Discussions
 Lunar Landing & Launch Pads (Rob Mueller)
Effect of E&C activities on lunar environmen
E&C Topics for Discussion
✓ E&C Conversations
PAGE TREE
99 Blog
Pages
Excavation & Construction

Lunar Surface Innovation C O N S O R T I U M Possible 21-22 Annual Goal Topics

(1) Lunar Servicing, Assembly and Manufacturing (LSAM)

Identify and recommend LSAM capabilities needed for habitat and landing pad construction and provide recommendations for CLPS activities.

- What kind of spare parts manufactured on Moon, supplier/demand sides, industry-academia-government ecosystem

(2) Optimal Lunar Habitats

Critical analysis of pros and cons of over-ground and under-ground habitat and provide recommendations for CLPS missions.

- available technologies, effect on lunar environment, optimal architecture

Express your views or suggest any other topic in Confluence

Today's Talks

Two ~20-minute presentations :

• Kari Abromitis is a Product Strategist for *Redwire*, a new leader in mission critical space solutions and high reliability components for next generation space systems and infrastructure. Kari will give a presentation on Redwire's technologies that are applicable to lunar excavation and construction .

• **Dr. Bibhrajit Halder** is the founder and CEO of **SafeAI**. SafeAI's autonomous technology enables equipment owners to transform existing machines into self-operating robotic assets. Their autonomous platform brings advanced AI and autonomous vehicle technology to mining and construction industries.

JOHNS HOPKINS APPLIED PHYSICS LABORATORY

8

Lunar Surface Innovation C O N S O R T I U M Possible 21-22 Annual Goal Topics

Lunar Servicing, Assembly and Manufacturing (LSAM)

Identify and recommend LSAM capabilities needed for habitat and landing pad construction and provide recommendations for CLPS activities.

- What kind of parts are beneficial to be manufactured on lunar surface as opposed to sending from ulletearth?
- What are some possible demands for metal manufacturing on the moon in the short term? \bullet
- What kind of metal-based spare parts are needed / maybe needed to be made? \bullet
- Where can the suppliers / technology developers know about lunar surface construction \bullet demands? Identify supply and demand sides.
- How can industry and academia be brought into this eco-system. \bullet

Express your views or suggest any other topic in Confluence

Optimal Lunar Habitats

Perform a critical analysis of pros and cons of over-ground and under-ground habitat and provide recommendations for CLPS missions.

- Explore and compare available technologies. \bullet
- Analyze the two options from cost, safety and sustainability points of view. \bullet
- Effect on lunar environment and how to mitigate. ullet
- Recommend an optimal architecture for habitats; maybe a combination of two. \bullet
- How can industry and academia be brought into this eco-system? \bullet

Express your views or suggest any other topic in Confluence

E&C Technical Areas Google Survey Results

Habitat construction in lunar conditions. (Inflatable habitat, underground habitat, radiation shielding, multi- functional materials/structures)	70.5%
Manufacturing processes for lunar construction. (Additive manufacturing, sintering, regolith fiber pulling)	63.6%
Excavation technology for hard regolith/icy material. (Drilling, mining, lightweight construction equipment)	61.4%
Autonomous vehicles and robots for E&C on lunar surface.	59.1%
Lunar surface structure development. (Landing pads, berms, roads)	54.5%
Increased autonomy of operations.	34.1%
Virtual lunar terrain simulation.	29.5%
Beyond additive technology.	22.7%
Long duration robust, easily maintainable robot design for industrial scale use (not science)	2.3%
Subsurface and interior imaging and composition analysis	2.3%
Compressed, sifted regolith as a building material	2.3%
Spacecraft refueling station development	2.3%

LSII System Integrator - APL


A key tenet of LSII is to implement a multitude of novel collaborations across industry, academia, and government in order to successfully develop the transformative capabilities for lunar surface exploration.

Origin of the APL Task

- NASA was investigating using a University Affiliated Research Center (UARC) to bring efficiencies to development
- LSII initiated a tasked APL, to assess system integration role for the Lunar Surface Innovation Initiative
- APL established a Lunar Surface Consortium with academia and industry representatives, as well as NASA experts, that span a broad range of capabilities to execute timely studies, tasks, and/or acquisitions

The Consortium will assist NASA in

- Identifying lunar surface technology needs and assessing the readiness of relative systems and components
- Making recommendations for a cohesive, executable strategy for development and deployment of the technologies required for successful lunar surface exploration
- Providing a central resource for gathering information, analytical integration of lunar surface technology demonstration interfaces, and sharing of results

